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An atomic- and molecular-level understanding of hetero-
geneous catalysis is required to characterize the nature of
active sites and improve the rational design of catalysts1–3.
Achieving this level of characterization requires techniques
that can correlate catalytic performances to specific surface
structures, so as to avoid averaging effects1. Tip-enhanced
Raman spectroscopy4–7 combines scanning probe microscopy
with plasmon-enhanced Raman scattering and provides simul-
taneous topographical and chemical information at the nano/
atomic scale from ambient8–10 to ultrahigh-vacuum11,12 and
electrochemical environments13,14. Therefore, it has been used
to monitor catalytic reactions15–18 and is proposed to correlate
the local structure and function of heterogeneous catalysts19.
Bimetallic catalysts, such as Pd–Au, show superior perform-
ance in various catalytic reactions20,21, but it has remained chal-
lenging to correlate structure and reactivity because of their
structural complexity. Here, we show that TERS can chemically
and spatially probe the site-specific chemical (electronic and
catalytic) and physical (plasmonic) properties of an atomically
well-defined Pd(sub-monolayer)/Au(111) bimetallic model
catalyst at 3 nm resolution in real space using phenyl isocya-
nide as a probe molecule (Fig. 1a). We observe a weakened
N≡C bond and enhanced reactivity of phenyl isocyanide
adsorbed at the Pd step edge compared with that at the Pd
terrace. Density functional theory corroborates these obser-
vations by revealing a higher d-band electronic profile for the
low-coordinated Pd step edge atoms. The 3 nm spatial resol-
ution we demonstrate here is the result of an enhanced electric
field and distinct electronic properties at the step edges.

We prepared a well-defined bimetallic model catalyst by electro-
chemical underpotential deposition of a monoatomic Pd layer with
different coverages on a well-ordered Au(111) single-crystal surface
(Fig. 1b). ML denotes the full monolayer and 0.8 ML indicates 0.8
coverage. Scanning tunnelling microscopy (STM) images of the
bare Au(111) (Fig. 1c) and PdML/Au(111) (Fig. 1e) substrates
show continuous atomic flat surfaces, and that of the Pd0.8ML/
Au(111) sample (Fig. 1d) shows some Au holes in the continuous
Pd monoatomic layer. Therefore, it contains not only Pd and Au
surface sites, but also Pd–Au interfacial sites, representing a
typical state-of-the-art bimetallic catalyst surface. These atomically
well-defined bimetallic surfaces allow a clear structure–function
relationship to be explored at atomic and molecular levels.

Phenyl isocyanide (PIC) (Fig. 2b, inset)22 was then used as a
Raman probe to detect the electronic and catalytic properties of
the surface. The N≡C stretching frequency (νNC) of PIC is sensitive
to the atomic geometry and electronic structure of metal surfaces23,24.

Compared with a bare Au(111) surface (Fig. 1c), some single atomic
layer vacancies can be observed on a PIC adsorbed Au(111) surface
(denoted as PIC/Au(111); Fig. 1f, see inset for the height profile).
The strong complexation ability of isocyanide for gold leads to the
leaching of gold atoms by PIC during adsorption (Supplementary
Section 2). An STM image of a PdML/Au(111) surface with PIC
adsorption (Fig. 1h, denoted PIC/PdML/Au(111)) does not show
vacancies, indicating that PIC does not leach Pd atoms.

Time-dependent tip-enhanced Raman spectroscopy (TERS)
spectra of PIC/Au(111) and PIC/PdML/Au(111) samples are
shown in Fig. 2a and c, respectively. The low-frequency vibrations
related to the benzene ring appear at similar frequencies for Au
and Pd surfaces, that is, 1,000 cm−1 (in-plane ring deformation,
αring), 1,165 cm−1 (C–H in-plane bending, βCH), 1,192 cm−1 (C–NC
stretching, νC−NC) and 1,590 cm−1 (C=C stretching, νCC), consist-
ent with the theoretical spectrum (Fig. 2b and Supplementary
Tables 2 and 3). The peaks at 2,190 and 1,995 cm−1 correspond
to νNC for the atop and bridge adsorption configurations of PIC
on Au on Pd surfaces, respectively (see Supplementary Section 3
for a detailed analysis). For the PIC/Au(111) sample, the νNC
peak can only be observed at the beginning and disappears
quickly. After a few minutes of measurement, the spectra contain
only the vibrational peaks of the benzene ring, but with a signifi-
cant broadening of the 1,590 cm−1 peak (see Supplementary
Fig. 5 for more TERS results obtained under different laser
powers). X-ray photoelectron spectroscopy (XPS) results suggest
that PIC has been oxidized to phenyl isocyanate on the Au(111)
surface (Supplementary Fig. 7). In Fig. 2a, the peak at 1,540 cm−1

indicated by the red dashed line can be attributed to the in-plane
coupled mode of the phenyl ring and NCO group in phenyl isocya-
nate (see Supplementary Table 4 and 5 for peak assignments and
Section 4 for a discussion), also suggesting the oxidation of PIC.
Indeed, despite bulk gold being generally known as a poor catalyst,
it can efficiently catalyse various reactions of adsorbed isocyanide
under mild conditions25. Similar to this study, isocyanide has
been found to be oxidized on gold films when exposed to air26.
In contrast, stable TERS spectra of PIC on PdML/Au(111) can be
obtained even at a relatively high laser power (Fig. 2c). This indi-
cates that the PdML/Au(111) surface is significantly less active than
the Au(111) surface for the catalytic oxidation of PIC by oxygen
under ambient conditions (see Supplementary Section 4 for a
discussion on the catalytic activities of Au and Pd surfaces).

The distinct Raman features of PIC on Au(111) and PdML/
Au(111) surfaces makes it ideal to detect the electronic and catalytic
properties of the heterogeneous bimetallic catalyst surface. For the
bare Pd0.8ML/Au(111) surface, the sub-ML deposition of Pd leaves
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some gold holes with monoatomic depth (Fig. 1d). In comparison,
the depth of the gold holes increases from monoatomic to two or
three atoms high after the adsorption of PIC on the Pd0.8ML/
Au(111) surface, denoted as PIC/Pd0.8ML/Au(111) (Fig. 1g). This
observation is similar to that on Au(111) surface, where the increase
in the depth of gold holes can be attributed to the leaching of gold
atoms by PIC (PIC adopts a similar vertical configuration on Au
and Pd surfaces, Supplementary Fig. 2). Another STM image
(Fig. 3a) of the PIC/Pd0.8ML/Au(111) sample shows a region with
a gold hole surrounded by Pd ML. Figure 3b plots the line-trace
TERS spectra acquired along the line marked in Fig. 3a, with the
tip moving across PdML–Au hole–PdML regions (for more data
sets see Fig. 3c and Supplementary Fig. 9). The TERS spectra
clearly evolve from the PdML to the Au hole and back to the PdML

region (Fig. 3b,c), which complements the STM topography but
provides rich chemical information. The oxidation of PIC on the
Au hole region is evidenced by the appearance of the 2,245 cm−1

peak (Supplementary Fig. 5), assigned to the stretching vibration
of the N=C=O bond (νNCO).

The variation of the TERS intensity can be seen as a colour-coded
map in Fig. 3c, offering a clear chemical contrast between the PdML

and Au hole surfaces. The intensities of the three main peaks (1,165,
1,590 and 1,995 cm−1) are plotted as a function of tip position in
Fig. 3d (see Supplementary Section 6 for the procedure for intensity
analysis). The decrease in the intensities of the 1,165 and 1,590 cm−1

bands in the Au hole region is mainly ascribed to a lower PIC cover-
age on the Au than on the Pd surface (Supplementary Section 7).
The intensity of the 1,995 cm−1 peak should decrease to zero in
the Au hole region. The νNC of PIC on the Au surface should
appear at ∼2,190 cm−1. However, this peak was not observed due
to the oxidation of PIC. The intensity profiles of all three bands
match well with the height profile (Fig. 3d), indicating that the
site-specific chemical properties of the Pd0.8ML/Au(111) bimetallic
surface have been spatially resolved.

Another striking feature of Fig. 3d is the enhanced TERS inten-
sities of all three bands at the step edges, which may result from
either a higher local coverage or a stronger electromagnetic field
at the step edge. There would be not much difference for the
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Figure 1 | TERS study of a Pd/Au(111) bimetallic model catalyst.
a, Schematic of an STM-based TERS configuration using Au tips and
Pd/Au(111) substrates with phenyl isocyanide (PIC) on the surface. b, CV
showing the underpotential deposition of Pd (cathodic peak at −0.005 V) on
a Au(111) surface obtained in a solution of 1 mM H2PdCl4 and 0.1 M H2SO4

at a scan rate of 1 mV s–1. The peak at 0.097 V corresponds to the anodic
dissolution of Pd. c–e, STM images of bare Au(111) (c), Pd0.8ML/Au(111) (d)
and PdML/Au(111) (e) surfaces with corresponding atomic models on top.
f–h, STM images of the surfaces after PIC adsorption for PIC/Au(111) (f),
PIC/Pd0.8ML/Au(111) (g) and PIC/PdML/Au(111) (h) surfaces. Insets below
all STM images are height profiles obtained at the dashed lines
in the corresponding STM images. All STM images have dimensions of
200 nm× 200 nm and were obtained by Pt-Ir tips.
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Figure 2 | TERS spectra of PIC. a, TERS spectra of PIC adsorbed on a
Au(111) surface (0.4 mW, 1 s). b, Theoretical Raman spectrum of free PIC
molecule. Inset: chemical structure of PIC. c, TERS spectra of PIC adsorbed
on a PdML/Au(111) surface (1.2 mW, 1 s).
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molecular coverage at the step edge and terrace, because the cover-
age of PIC on the PdML/Au(111) surface is about a full monolayer
(Supplementary Section 7). We simulated the electromagnetic
field at the step edge using a finite-difference time-domain
method. The results suggest a stronger electromagnetic field at the
step edges than on the Au and PdML terraces (Fig. 3e,f ), qualitatively
explaining the experimental results. This enhancement can be
understood by the lightning-rod effect (non-resonant), because of
the decrease in the effective curvature radius at the step edge com-
pared with the terrace and the possible plasmonic effect (resonant)
due to the accumulation of surface charges at the step edge. This is
similar to the observation that a 2-nm-high step edge could produce
a stronger TERS intensity than flat surface sites27 and the theoretical
prediction of a stronger localization of electromagnetic fields at
atomic step features28. The spatial resolution is estimated to be
∼3 nm within a 10–90% contrast (Fig. 3d) or a full-width at half-
maximum (FWHM) analysis (Supplementary Fig. 13).

It would be interesting to see if we can distinguish the electronic
and catalytic properties of the atoms at different surface sites.
Figure 4a presents an STM image (height profile in Fig. 4b) from

another Pd–Au–Pd region of the PIC/Pd0.8ML/Au(111) sample.
The line-scan TERS spectra show only one peak at ∼1,995 cm−1 at
the Pd terrace, and another lower frequency peak at ∼1,933 cm−1

appears when the tip approaches Pd edges (Fig. 4c,d; for more
data see Supplementary Fig. 14). The 1,933 cm−1 peak has a much
narrower FWHM (∼35 cm−1) than the 1,995 cm−1 peak (∼60 cm−1),
indicating a distinct molecular adsorption state. We attribute this
peak to a rise from PIC adsorbed at the Pd step edges.

Density functional theory (DFT) calculations were performed to
elucidate the local electronic structure of the Pd terrace and step
edges, and to understand the different peak frequencies and reaction
activities for the PIC molecule at these two sites (analysis of the elec-
tronic structure of adjacent Au atoms can be found in
Supplementary Fig. 15). Figure 4e and f are the simulation models
for the Pd terrace and step edge (using an island-like Pd overlayer),
respectively. Figure 4g shows the projected electronic density of
states (DOS) of d-bands on clean Pd atoms at different surface
sites. The inner two Pd atoms (numbered 1 and 2 in Fig. 4f ) have
a similar d-band profile to the terrace Pd atom (solid blue line in
Fig. 4g), while the adjacent atom of step edge (number 3 in
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Fig. 4f) has a higher peak at the top of the d-band. The projected
DOS of the step-edge Pd atom has a global shift to higher energy
and a narrowing of the d-band (solid orange line in Fig. 4g), as a
result of its unsaturated coordination and thus the decrease in
inter-atom coupling29.

Figure 4h presents the energy levels of the σ lone electron pair
molecular orbital (HOMO-2) and unoccupied π* molecular orbital
(LUMO) of the PIC molecule in vacuum; these are the dominant
frontier orbitals interacting with themetal substrate. After interaction
of PIC with Pd, the σ orbital of PIC hybridizes with the d states of the
Pd atom and shifts to lower energies at ∼−8.0 eV (Fig. 4i), and the
projected DOS of the Pd atoms show matching peaks (Fig. 4j), con-
firming the σ–d interaction. The σ orbital of PIC adsorbed at the step
edge (Fig. 4i, dashed purple line) is at higher energies than that
at the terrace (Fig. 4i, solid purple line), indicating a weaker σ–d
interaction at the step edge30. In comparison to the terrace case
(Fig. 4i, solid pink line), a stronger back donation of the d electrons
of the Pd atom to the π* orbital of the PICmolecules at the step edge

is evidenced by (1) the more significant splitting and broadening of
the π* orbital (Fig. 4i, dashed pink line); (2) stronger d–π* interact-
ing peaks at ∼−1.0 eV (Fig. 4i inset, dashed pink line) and (3) the
appearance of resonating peaks at ∼1.8 eV (Fig. 4j inset, solid
orange line), which are absent for terrace adsorption. Taken
together, the upshift of the electronic d-band profile at the step
edge decreases the σ–d interaction but enhances the d–π* back-
donation, which weakens the NC bond strength.

Calculations of vibrational frequencies support these findings.
The calculated νNC frequencies of PIC adsorbed at terrace and
step edge are 1,965 and 1,905 cm−1, respectively (Supplementary
Table 1 and 2). The redshift of 60 cm−1 from terrace to step edge
is in agreement with the experimental results (Fig. 4c,d). The
lower frequency peak indicates a weaker NC bond of PIC adsorbed
at the step edge than that at terraces. Because PIC has the same
bridge adsorption configuration and comparable binding affinity
at the Pd step edge and terrace, the weakened NC bond at the
step edge becomes more labile for oxidation. Indeed, from the
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results in Fig. 4c,d and Supplementary Fig. 14, the νNCO peak at
2,250 cm−1 can generally be observed at Pd step edges but not at
terraces (similar results for the in-plane coupled mode are presented
in Supplementary Fig. 6). These results suggest a higher activity for
PIC oxidation at the Pd step edge than that at the terrace. The
spatially resolved TERS provides unambiguous evidence regarding
the unique electronic and catalytic properties of the Pd step edge.

In summary, we have demonstrated that the site-specific elec-
tronic and catalytic properties of a Pd/Au(111) bimetallic surface
can be spatially resolved at 3 nm resolution in real space. The
ability to spatially distinguish the molecular vibrational features of
molecules adsorbed at different surface sites will allow a more
detailed understanding of heterogeneous catalysis. TERS is ideally
suited to the study of defects, step edges and perimetrical interfaces
of various catalytic materials, which, while often representing a min-
ority of surface sites, can play a crucial role in determining catalytic
performance. It is expected that the application of TERS will be
useful for catalysis studies at atomic and molecular levels, eventually
leading to an improved nanoscale design of catalysts.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Pd was electrodeposited onto Au(111) surfaces by cyclic voltammogram (CV) at a
scan rate of 1 mV s–1, in a solution of 1 mM H2PdCl4 and 0.1 M H2SO4. PIC was
allowed to adsorb and form a self-assembled monolayer on the Au(111) and Pd/Au
(111) surfaces by immersing the substrates in a 20 µM ethanoic solution of PIC for
30 min. Electrochemically etched gold tips were used for TERS measurements. In a
TERS line-trace imaging experiment, the tip was scanned at a velocity of 2 nm s–1

and TERS spectra were acquired simultaneously in an integration time of 1 s
(1 spectrum per second; that is, one spectrum is acquired for every 2 nm of surface
distance). A laser power of 0.7 mW was used in all TERS imaging experiments.
All the STM images and TERS spectra were acquired under a tunnelling condition of
200 pA and 600 mV. Note that the line-trace imaging experiments were performed

after a few hours of TERS measurements (continuous laser illumination) to
maximally decrease the drift of the system to ∼2 nm min–1. The three-dimensional
finite-difference time-domain (3D-FDTD) method was used to calculate the
TERS enhancement factor. DFT calculations were performed with the
Perdew–Burke–Ernzerhof functional and projector augmented-wave method, as
implemented in Quantum ESPRESSO package31.
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